

**BACHELOR'S DEGREE PROGRAMME
(BDP)**

01532 Term-End Examination

June, 2017

(APPLICATION ORIENTED COURSE)

AST-01 : STATISTICAL TECHNIQUES

Time : 2 hours

Maximum Marks : 50

(Weightage : 70%)

Note: Question no. 7 is compulsory. Attempt any four questions from the remaining questions no. 1 to 6. Use of calculators are not allowed. You may want to use some values given at the end.

1. (a) Construct a continuous frequency distribution for the following heights (in cm) of 50 students in a class and draw its frequency polygon : 4

146	156	152	167	178	180	172	162	148
153	161	173	163	174	147	179	148	151
168	172	165	173	172	180	175	145	153
154	162	164	170	172	160	161	158	152
163	165	170	168	158	149	155	160	150
149	167	176	169	159				

(b) In a partially destroyed laboratory record of an analysis of correlation data, the following results are legible :

The equations of two regression lines are as follows :

$$3X + 12Y = 19$$

$$3Y + 9X = 46$$

Obtain (i) mean values of X and Y; (ii) the values of regression coefficients; and (iii) the value of correlation coefficient.

6

2. (a) The frequency distribution of marks of 230 students in a statistics paper in a class is given below :

Class Interval	Frequency
10 – 20	12
20 – 30	30
30 – 40	?
40 – 50	65
50 – 60	?
60 – 70	25
70 – 80	18
Total	230

Given that the median value of distribution is 46, determine the missing frequencies.

6

(b) 25 samples of 6 items each were selected from the assembly line of a machine. On measurement of a critical dimension, the mean of 25 sample means was reported as 0.81 inches and \bar{R} as 0.0025 inches. Compute the control limits for the \bar{X} and R charts.
[You may use the values given at the end] 4

3. (a) There are 40 pages in a book numbered from 1 to 40. A page is opened at random. Find the probability that the number of that opened page is a multiple of 3 or 5. 2

(b) An insurance company insured 1000 scooter drivers, 3000 car drivers and 6000 truck drivers. The probabilities that the scooter, car and truck drivers meet with an accident are 0.02, 0.04 and 0.25, respectively. One of the insured drivers meets with an accident. What is the probability that he is a (i) car driver ; (ii) truck driver ? 4

(c) If the random variable X is normally distributed with mean 80 and standard deviation 5, then find (i) $P[60.5 < X < 90]$, and (ii) $P[|X - 80| < 1]$.

[You may use the values given at the end] 4

4. (a) The monthly income (in ₹ lakhs) of five employees in a company are as follows : 25, 20, 30, 15, 10. (i) List all possible samples (without replacement) of size 2 (ii) Compute the mean of all samples and set up the sampling distribution of sample mean. 4

(b) 1000 students at college level were graded according to their IQ levels and the economic condition of their parents, as follows :

Economic Condition	IQ Level		
	High	Low	Total
Rich	230	170	400
Poor	470	130	600
Total	700	300	1000

Test the hypothesis that the IQ levels are independent of the economic conditions at 1% level of significance.

[You may like to use the values given at the end]

6

5. (a) A company appointed four salesmen A, B, C and D and observed their sales in three seasons – Summer, Winter and Monsoon. Test whether the average sales of the four salesmen differ in amount (in ₹ lakhs) as given below by one-way analysis of variance (ANOVA) using observations after taking deviation from 30.

Season	Salesmen				Total
	A	B	C	D	
Summer	36	36	21	35	128
Winter	28	29	31	32	120
Monsoon	26	28	29	29	112
Total	90	93	81	96	360

[You may use the values given at the end]

6

(b) What is cluster sampling ? How does it differ from stratified sampling ? Give examples of each to suggest the usefulness of both samplings. 4

6. (a) Calculate the 5-yearly moving average for the following data of the profits of a company (in ₹ lakhs) during 1995 to 2010 : 4

Year	Profit (in ₹ lakhs)	Year	Profit (in ₹ lakhs)
1995	230	2003	90
1996	260	2004	130
1997	280	2005	110
1998	320	2006	140
1999	200	2007	120
2000	120	2008	90
2001	120	2009	30
2002	100	2010	10

(b) A population of size 10000 is divided into 4 strata. Their sizes and standard deviations are given below :

	Strata			
	I	II	III	IV
N_i = size	5000	1000	2000	2000
S_i =	25	10	15	20

A stratified random sample of size 500 is to be drawn from this population. Determine the sizes of samples from these strata, in case

(i) Proportional allocation is used.

(ii) Neyman's optimum allocation is used. 6

7. Which of the following statements are 'true' and which are 'false'. Prove by giving justification. $5 \times 2 = 10$

- The number of samples of size 3 with replacement from a population of size 6 is 20.
- If the odds in favour of an event A are 3 : 4, then the probability of occurrence of A will be $4/7$.
- If the level of significance is the same, the area of the rejection region in a 2-tailed test is less than that in a 1-tailed test.
- There is no seasonal variation in an annual time series.
- In a binomial distribution, if X represents the number of successes in 25 trials and the probability of success at each trial is 0.5, then the standard deviation of X is 2.

Some values for use, if required.

χ^2 -values	F-values	Normal values	Other values
$\chi^2_{0.5\%}(1) = 3.84$	$F_{0.5\%}(3, 8) = 8.83$	$P[0 < z < 2] = 0.4772$	$A_2 = 0.483$
$\chi^2_{0.1\%}(1) = 6.63$	$F_{0.1\%}(3, 8) = 27.48$	$P[z < 2] = 0.9772$	$D_3 = 0$
$\chi^2_{0.1\%}(4) = 13.3$	$F_{0.5\%}(4, 12) = 5.9117$	$P[0 < z < 0.2] = 0.0793$	$D_4 = 2.004$
$\chi^2_{0.5\%}(4) = 9.49$		$P[0 < z < 0.8] = 0.3106$	

स्नातक उपाधि कार्यक्रम

(बी.डी.पी.)

सत्रांत परीक्षा

जून, 2017

(व्यवहारमूलक पाठ्यक्रम)

ए.एस.टी.-01 : सांख्यिकीय तकनीकें

समय : 2 घण्टे

अधिकतम अंक : 50

(कुल का : 70%)

नोट: प्रश्न सं. 7 अनिवार्य है। शेष प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों का प्रयोग करने की अनुमति नहीं है। आप अंत में दिए गए कुछ मानों का प्रयोग कर सकते हैं।

1. (क) एक कक्षा में 50 छात्रों की निम्नलिखित ऊँचाइयों (सेमी में) के लिए संतत बारंबारता बट्टन बनाइए और उसका बारंबारता बहुभुज आरेखित कीजिए : 4

146	156	152	167	178	180	172	162	148
153	161	173	163	174	147	179	148	151
168	172	165	173	172	180	175	145	153
154	162	164	170	172	160	161	158	152
163	165	170	168	158	149	155	160	150
149	167	176	169	159				

(ख) एक सहसंबंध आँकड़े के विश्लेषण के प्रयोगशाला परिणाम का रिकॉर्ड जो आंशिक रूप से नष्ट हो गया है, उसमें से निम्नलिखित को स्पष्ट रूप से पढ़ा जा सकता है :

दो समाश्रयण रेखाओं के समीकरण निम्नलिखित हैं :

$$3X + 12Y = 19$$

$$3Y + 9X = 46$$

(i) X और Y के माध्य मान; (ii) समाश्रयण गुणांकों के मान; और (iii) सहसंबंध गुणांक के मान प्राप्त कीजिए । 6

2. (क) एक कक्षा में सांख्यिकी के प्रश्न-पत्र में 230 विद्यार्थियों के अंकों का बारंबारता बंटन नीचे दिया गया है :

वर्ग-अन्तराल	बारंबारता
10 – 20	12
20 – 30	30
30 – 40	?
40 – 50	65
50 – 60	?
60 – 70	25
70 – 80	18
कुल	230

दिया गया है कि बंटन की माध्यिका का मान 46 है, लुप्त बारंबारताएँ निर्धारित कीजिए ।

6

(ख) मशीन की ऐसेम्बली रेखा से 6 वस्तुओं के 25 प्रतिदर्श चुने गए। क्रांतिक आयाम के माप पर 25 प्रतिदर्श माध्यों का माध्य 0.81 इंच और \bar{R} , 0.0025 इंच पाया गया। \bar{X} और R चार्टों के लिए नियंत्रित सीमाएँ अभिकलित कीजिए।
[आप अंत में दिए गए मानों का प्रयोग कर सकते हैं] 4

3. (क) एक पुस्तक में 1 से 40 की संख्या वाले 40 पृष्ठ हैं। एक पृष्ठ यादृच्छया खोला जाता है। इसकी प्रायिकता ज्ञात कीजिए कि खोले गए पृष्ठ की संख्या 3 या 5 का गुणज होगी। 2

(ख) एक बीमा कम्पनी 1000 स्कूटर ड्राइवरों, 3000 कार ड्राइवरों और 6000 ट्रक ड्राइवरों का बीमा करती है। इसकी प्रायिकताएँ कि स्कूटर, कार और ट्रक चालकों की दुर्घटना होंगी क्रमशः 0.02, 0.04 और 0.25 हैं। बीमा कराए गए चालकों में से एक की दुर्घटना होती है। इसकी क्या प्रायिकता है कि वह (i) कार चालक है; (ii) ट्रक चालक है? 4

(ग) यदि यादृच्छिक चर X प्रसामान्यतः बंटित है, जिसका माध्य 80 और मानक विचलन 5 है, तब ज्ञात कीजिए (i) $P[60.5 < X < 90]$ और (ii) $P[|X - 80| < 1]$.
[आप अंत में दिए गए मानों का प्रयोग कर सकते हैं] 4

4. (क) एक कम्पनी के पाँच कर्मचारियों की मासिक आय (₹ लाखों में) इस प्रकार हैं : 25, 20, 30, 15, 10. (i) आमाप 2 के सभी संभावित प्रतिदर्शों (बिना प्रतिस्थापन) की सूची बनाइए (ii) सभी प्रतिदर्शों का माध्य अभिकलित कीजिए और प्रतिदर्श माध्य का प्रतिचयन बनाइए। 4

(ख) कॉलेज स्तर के 1000 विद्यार्थियों को उनके आई.क्यू. स्तर और उनके माता-पिता की आर्थिक स्थिति के अनुसार निम्नानुसार श्रेणीबद्ध किया गया :

आर्थिक स्थिति	आई.क्यू. स्तर		
	उच्च	निम्न	कुल
धनी	230	170	400
निर्धन	470	130	600
कुल	700	300	1000

परिकल्पना का परीक्षण कीजिए कि आई.क्यू. स्तर 1% सार्थकता स्तर पर आर्थिक स्थितियों के स्वतंत्र हैं ।

[आप अंत में दिए गए मानों का प्रयोग कर सकते हैं]

6

5. (क) एक कम्पनी, चार विक्रेता A, B, C और D की नियुक्ति करती है और तीन मौसमों – गर्मी, सर्दी और मानसून में उनकी बिक्रियों का प्रेक्षण करती है । प्रेक्षणों का 30 से विचलन लेते हुए एकधा वर्गीकरण ANOVA का प्रयोग करके जाँच कीजिए कि क्या चारों विक्रेताओं की बिक्री की औसत मात्राएँ (₹ लाखों में) भिन्न हैं या नहीं ।

मौसम	विक्रेता				कुल
	A	B	C	D	
गर्मी	36	36	21	35	128
सर्दी	28	29	31	32	120
मानसून	26	28	29	29	112
कुल	90	93	81	96	360

[आप अंत में दिए गए मानों का प्रयोग कर सकते हैं]

6

(ख) गुच्छ प्रतिचयन क्या है ? यह स्तरित प्रतिचयन से कैसे भिन्न है ? दोनों प्रतिचयनों की उपयोगिता बताने के लिए प्रत्येक के उदाहरण दीजिए ।

4

6. (क) वर्ष 1995 से 2010 के दौरान कम्पनी के लाभों (₹ लाखों में) के निम्नलिखित आँकड़ों के लिए 5-वर्षीय गतिमान औसत परिकलित कीजिए :

4

वर्ष	लाभ (₹ लाखों में)	वर्ष	लाभ (₹ लाखों में)
1995	230	2003	90
1996	260	2004	130
1997	280	2005	110
1998	320	2006	140
1999	200	2007	120
2000	120	2008	90
2001	120	2009	30
2002	100	2010	10

(ख) 10000 आमाप की समष्टि को 4 स्तरों में विभाजित किया जाता है । उनके आमाप और मानक विचलन नीचे दिए गए हैं :

स्तर

	I	II	III	IV
N_i = आमाप	5000	1000	2000	2000
S_i =	25	10	15	20

इस समष्टि से आमाप 500 का एक स्तरित यादृच्छिक प्रतिदर्श निकाला जाता है । इन स्तरों से प्रतिदर्शों के आमाप निर्धारित कीजिए, यदि

- आनुपातिक नियतन का प्रयोग किया जाता है ।
- नेमेन के इष्टतम नियतन का प्रयोग किया जाता है ।

6

7. पुष्टि सहित बताइए कि निम्नलिखित में से कौन-से कथन 'सत्य' हैं और कौन-से 'असत्य' । $5 \times 2 = 10$

(क) आमाप 6 की समष्टि से बिना प्रतिस्थापन के आमाप 3 के प्रतिदर्शों की संख्या 20 है ।

(ख) यदि एक घटना A के पक्ष में संभावना $3 : 4$ है, तब A के घटित होने की प्रायिकता $4/7$ होगी ।

(ग) यदि सार्थकता का स्तर समान है, तब द्वि-पुच्छी परीक्षण में अस्वीकार प्रदेश का क्षेत्रफल एकल-पुच्छी परीक्षण से कम होगा ।

(घ) वार्षिक काल श्रेणी में कोई मौसमी बदलाव नहीं होता है ।

(ङ) द्विपद बंटन में, यदि X, 25 प्रयोगों में सफलता की संख्या को निरूपित करता है और प्रत्येक प्रयोग की सफलता की प्रायिकता 0.5 है, तब X का मानक विचलन 2 है ।

यदि आवश्यक हो, तो कुछ मानों का प्रयोग कर सकते हैं ।

χ^2 - मान	F-मान	प्रसामान्य मान	अन्य मान
$\chi^2_{5\%}$ (1) = 3.84	$F_{5\%}(3, 8) = 8.83$	$P[0 < z < 2] = 0.4772$	$A_2 = 0.483$
$\chi^2_{1\%}$ (1) = 6.63	$F_{1\%}(3, 8) = 27.48$	$P[z < 2] = 0.9772$	$D_3 = 0$
$\chi^2_{1\%}$ (4) = 13.3	$F_{5\%}(4, 12) = 5.9117$	$P[0 < z < 0.2] = 0.0793$	$D_4 = 2.004$
$\chi^2_{5\%}$ (4) = 9.49		$P[0 < z < 0.8] = 0.3106$	