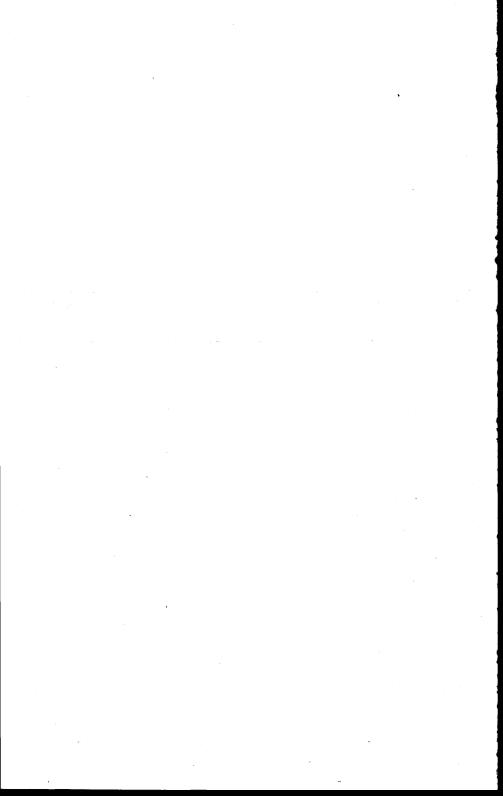

MCA (Revised)

Term-End Examination June, 2009

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS


Tin	1e : 3 h	ours	Maximum Marks	Maximum Marks : 100	
Note: Question No. 1 is compulsory. Attempt any t questions from the rest.					
1.	(a)	(i)	Enumerate five important characteristics of an Algorithm.	4	
		(ii)	Write a recursive procedure to find the sum of first n natural numbers.	4	
	(b)	(i)	State Travelling Sales Persons problem. Comment on the nature of solution to the problem.	4	
		(ii)	You are given stamps of value Rs. 5 and Rs. 6. Show that any amount ≥ Rs. 20 can be realized using stamps of Rs. 5 and Rs. 6. Use Mathematical Induction for the proof.	4	

- (c) (i) Write the non-recursive binary search 4 procedure.
 - (ii) Solve the recurrence $T(n) = 2T(\frac{n}{2}) + n \quad n \ge 2$ $= 1 \qquad n < 2$
- (d) (i) Obtain the minimum cost spanning 4 tree for the following graph using PRIMS algorithm.

- (ii) Obtain the BFS tree for the above 4 graph, given in d (i).
- (e) (i) Write a context free grammar to 4 generate palindromes of even length Over alphabet $\Sigma = \{a, b\}$.
 - (ii) Write the finite automata 4 corresponding to the regular expression (a+b)*ab.
- 2. (a) Derive the principle of optimality for 5 multiplication of matrix chain.

	(b)	Compute the optimal no. of scalar multiplications required to multiply the following matrices. A1 of order 30×35 A2 of order 35×15 A3 of order 15×5	10
	(c)	Give the list in each iteration for sorting the list 90, 42, 41, 120, 60, 50 using selection sort.	5
3.	(a)	Explain the Chomsky's Classification of grammars.	10
	(b)	What is an ambigous grammar? How do you prove that a given grammar is ambigous? Explain with an example.	10
4.	(a)	If L_1 and L_2 are context free languages then, prove that L_1 U L_2 is a context free language.	5
	(b)	Define Pushdown Automata.	5
	(c)	Explain Decidable and Undecidable problems. Give example for each.	10
5.	(a)	Construct a turing machine that copies a given string over {a, b}. Further find a computation of TM for the string 'aab'.	10
	(b)	Explain the importance of asymptotic analysis for running time of an algorithm.	5
	(c)	Write a note on NP-hard problems.	5

