Maximum Marks: 50

MCA (Revised)

Term-End Examination

7	
$\overline{}$	
3	
\sim	

Time: 2 hours

December, 2009

MCS-013: DISCRETE MATHEMATICS

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

- 1. (a) If a five digit number is chosen at random, what is the probability that the product of the digits is 20?
 - (b) If the function $f: R \to R$ is defined by $f(x) = x^2$. Find $f^{-1}(4)$ and $f^{-1}(-4)$.
 - (c) In how many ways can a prize winner choose any 3 CDs from the 'Ten Best' list?
 - (d) Let $A = \{a, b\}$ be a given set and $R = \{(a, a), (b, a), (b, b)\}$ and $S = \{(a, b), (b, a), (b, b)\}$ be relations on A. Then verify $(SoR)^{-1} = R^{-1} \circ S^{-1}$.
 - (e) Find contrapositve of:

- 3
- (i) If John is a poet then he is poor.
- (ii) Only if Marc studies will he pass the test.
- (f) Show that $2^n > n^3$ for $n \ge 10$.

4

- 2. (a) Construct the logic circuit for $x_1' \land (x_2 \lor x_3')$. 3
 - (b) What is the sum of the coefficients of all the terms in expansion of $(a+b+c)^7$?
 - (c) Show that the relation 'equality' defined in any set A is an equivalence relation.
- 3. (a) Find CNF form of $\neg (P \lor Q) \leftrightarrow P \land Q$. 4
 - (b) Establish the equivalence for 3 $P \rightarrow (O \rightarrow R) \equiv (P \land O) \rightarrow R$.
 - (c) Show that if any 20 people are selected, then we may choose a subset of 3 so that all 3 were born on the same day of the week?
- 4. (a) Use induction to prove that any integern ≥ 2 is either a prime or a product of primes.
 - (b) Given the set $A = \{1, 2, 3\}$, consider a relation 3 in $A : R = \{(1, 1), (2, 2), (2, 3), (3, 2)\}$. Find RoR.
 - (c) In how many ways can 12 balloons be distributed at a Birthday party among 10 children?

- 5. (a) Among the integers 1 to 200 find the number 4 of integers that are
 - (i) divisible by 2 or 5 or 9.
 - (ii) not divisible by 5.
 - (b) Determine the number of integer solutions to the equation $x_1 + x_2 + x_3 + x_4 = 7$, where $x_i \ge 0$ for all i = 1, 2, 3, 4.
 - (c) Find the number of ways of placing n people in n-1 rooms, no room being empty.

- 0 O o -