01269

MCA (Revised)

Term-End Examination

December, 2008

MCS-041: OPERATING SYSTEMS

Time: 3 hours Maximum Marks: 100

(Weightage-75%)

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) A system contains 10 units of a resource R1. 10

The resource requirement of 3 user processes
P1, P2, P3 can be summarised as:

	P1	P2	P3	
Max. Requirement	8	7	5	
Current Allocation	3	1	3	
Balance Requirement	5	6	2	
New Requirement Made	1	0	0	
Is the current allocation state feasible and				

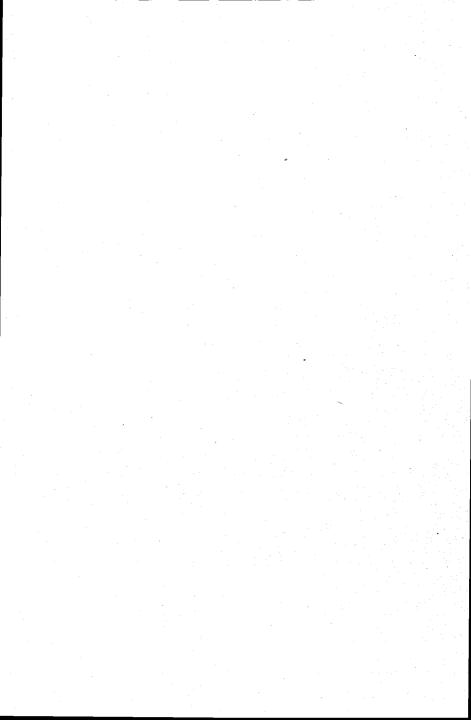
(Note: - Use Banker's algorithm).

safe? Explain.

(b) Give solution to the Dining Philosopher's problem using semaphores. Give a suitable example to explain it.

10

	(c)	Compare and contrast sharing of segments	10
		with sharing of pages. Explain the concept	
		of page faults with an example.	
	(d)	Explain any 2 disk scheduling algorithms.	10
		Calculate the total head movement with the	
		2 algorithms taken up. The block sequence	
		is as follows:	
		51, 90, 81, 152, 190, 140, 72, 100	
		Assume that the head is initially on block	
		number 20. Draw the diagrams for both	
		the algorithms. Also explain the diagrams.	
2.	(a)	Explain "working set" model. Explain it's	5
	• •	concept as well as implementation.	
	(b)	Compare Direct file with indexed sequential	5
		file organisation.	
	(c)	Discuss switching strategies in Distributed	10
		Operating System environment. Also give	
		short notes on Reliability and overheads in	
		protocol design.	
3.	(a)	Give a short note on conditional critical	5
		region.	
	(b)	Explain file processing in UNIX. Compare	5
		it with WINDOWS file processing.	
	(c)	Compare and Contrast Access List and	10
		Capability List. Discuss the implementation	
		of a security and protection algorithm in a	
		distributed operating system environment.	


- 4. (a) Explain Resource allocation graph for 10 multiple instances (with an example). Also explain the procedures in Deadlock recovery.
 - (b) For the given 4 processes arriving at time 10 (zero) in the order with length of CPU time in milliseconds:

<u>Process</u>	Processing time	
P1	10	
P2	12	
P3	30	
P4	29	

Obtain average waiting time and turnaround time for SJF and Round Robin (RR) – (Quantum = 3) scheduling algorithms for above said processes.

Which algorithm takes lesser average waiting time?

- 5. (a) Explain take-grant model for operating system security with an example.Also explain the mechanisms of security in WIN 2000 operating system.
 - (b) Explain Lamport's algorithm for ordering **10** of events in a distributed environment with an example.

